ovoid cell - определение. Что такое ovoid cell
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое ovoid cell - определение

SPHERE-LIKE SURFACE IN PROJECTIVE SPACE OF DIMENSION D ≥ 3
Ovoid (Projective geometry)
  • To the definition of an ovoid: t tangent, s secant line

Ovoid (projective geometry)         
In projective geometry an ovoid is a sphere like pointset (surface) in a projective space of dimension . Simple examples in a real projective space are hyperspheres (quadrics).
Cell (music)         
SMALLEST INDIVISIBLE UNIT OF MUSIC OF RHYTHMIC AND MELODIC DESIGN
Musical cell; Intervallic cell; Rhythmic cell; Melodic cell
The 1957 Encyclopédie Laroussequoted in Nattiez, Jean-Jacques (1990). Music and Discourse: Toward a Semiology of Music (Musicologie générale et sémiologue, 1987).
Cellcell interaction         
  • basolateral membrane]] is depicted as "sheets"; the space between these sheets being the extracellular environment and the location of adhesion protein interaction.
INTERACTION BETWEEN CELLS
Cell-cell interaction; Cell–cell interactions; Cell-cell interactions
Cellcell interaction refers to the direct interactions between cell surfaces that play a crucial role in the development and function of multicellular organisms.

Википедия

Ovoid (projective geometry)

In projective geometry an ovoid is a sphere like pointset (surface) in a projective space of dimension d ≥ 3. Simple examples in a real projective space are hyperspheres (quadrics). The essential geometric properties of an ovoid O {\displaystyle {\mathcal {O}}} are:

  1. Any line intersects O {\displaystyle {\mathcal {O}}} in at most 2 points,
  2. The tangents at a point cover a hyperplane (and nothing more), and
  3. O {\displaystyle {\mathcal {O}}} contains no lines.

Property 2) excludes degenerated cases (cones,...). Property 3) excludes ruled surfaces (hyperboloids of one sheet, ...).

An ovoid is the spatial analog of an oval in a projective plane.

An ovoid is a special type of a quadratic set.

Ovoids play an essential role in constructing examples of Möbius planes and higher dimensional Möbius geometries.